MATH 504 HOMEWORK 7

Due Friday, April 29.
Problem 1. Suppose that \mathbb{P} and \mathbb{Q} are two c.c.c. posets. Show that the following are equivalent:
(1) $\mathbb{P} \times \mathbb{Q}$ is c.c.c;
(2) $1_{\mathbb{P}} \Vdash_{\mathbb{P}}$ © is c.c.c;
(3) $1_{\mathbb{Q}} \Vdash_{\mathbb{Q}} \check{\mathbb{P}}$ is c.c.c;

Problem 2. Let \mathbb{P} be a poset such that for every $p \in \mathbb{P}$, there are incompatible $q, r \leq p$. Suppose G is \mathbb{P}-generic. Show that $G \times G$ is not $\mathbb{P} \times \mathbb{P}$-generic.

Problem 3. Let $\mathbb{P} \in V$ be a poset, and let $\dot{\mathbb{Q}}$ be a \mathbb{P} name for a poset, i.e. $1_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ is a poset. Suppose that G is \mathbb{P}-generic over V, and that H is $\dot{\mathbb{Q}}_{G}$-generic over $V[G]$. Show that $K:=G * H=\left\{(p, \dot{q}) \mid p \in G, \dot{q}_{G} \in H\right\}$ is $\mathbb{P} * \dot{\mathbb{Q}}$-generic over V.
Problem 4. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ has the κ-chain condition. Show that \mathbb{P} has the κ-chain condition, and $1_{\mathbb{P}} \Vdash$ " \mathbb{Q} has the κ-chain condition".

Remark 1. The converse is also true.
Problem 5. Suppose that \mathbb{P} is κ distributive, and $1_{\mathbb{P}} \Vdash$ " \mathbb{Q} is κ-distributive". Show that that $\mathbb{P} * \dot{\mathbb{Q}}$ is κ-distributive.

