MATH 504 HOMEWORK 7

Due Friday, April 29.

Problem 1. Suppose that \mathbb{P} and \mathbb{Q} are two c.c.c. posets. Show that the following are equivalent:

- (1) $\mathbb{P} \times \mathbb{Q}$ is c.c.c;
- (2) $1_{\mathbb{P}} \Vdash_{\mathbb{P}} \check{\mathbb{Q}} \text{ is } c.c.c;$
- (3) $1_{\mathbb{O}} \Vdash_{\mathbb{O}} \check{\mathbb{P}}$ is c.c.c;

Problem 2. Let \mathbb{P} be a poset such that for every $p \in \mathbb{P}$, there are incompatible $q, r \leq p$. Suppose G is \mathbb{P} -generic. Show that $G \times G$ is not $\mathbb{P} \times \mathbb{P}$ -generic.

Problem 3. Let $\mathbb{P} \in V$ be a poset, and let $\dot{\mathbb{Q}}$ be a \mathbb{P} name for a poset, i.e. $\mathbb{1}_{\mathbb{P}} \Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ is a poset. Suppose that G is \mathbb{P} -generic over V, and that H is $\dot{\mathbb{Q}}_{G}$ -generic over V[G]. Show that $K := G * H = \{(p, \dot{q}) \mid p \in G, \dot{q}_G \in H\}$ is $\mathbb{P} * \dot{\mathbb{Q}}$ -generic over V.

Problem 4. Suppose that $\mathbb{P} * \dot{\mathbb{Q}}$ has the κ -chain condition. Show that \mathbb{P} has the κ -chain condition, and $1_{\mathbb{P}} \Vdash "\dot{\mathbb{Q}}$ has the κ -chain condition".

Remark 1. The converse is also true.

Problem 5. Suppose that \mathbb{P} is κ distributive, and $1_{\mathbb{P}} \Vdash ``\dot{\mathbb{Q}}$ is κ -distributive". Show that that $\mathbb{P} * \dot{\mathbb{Q}}$ is κ -distributive.